Manageability Services
Broker

The Open Group Manageability
Working Group

W

Diverse Applications

= Components are 'diverse’ across
» language
> operating system
» physical system
» middlewares
» networks
» component protocols
» corporations

= Applications are critical to business
= Requires manageabillity

Management today

= Creating Application specific management
system

= Creating their own agent type infrastructure
» Have to learn management principles
» Only do whats absolutly necessary
» Often inferior design and capability
» Can't be accessed by 3rd party management

systems

= They would rather not write their own, they
would rather someone give them something
standard and free.

As management vendors...

= We want to give them a manageabillity
iInfrastructure suitable for them to use for
their own specific management system.

= \We can access this infrastructure in terms
we unhderstand.

= \We can be sure the infrastructure iIs reliable
with reasonable quality.

= \We can guide the application developers on
managabllity development

» Consider elements of manageabillity (deploy,
Install, cfg, metrics, ops, events,...)

» How to expose these elements

The futures so bright...

= As the standard manageabillity infrastructure
becomes pervasive, a vast 'distributed data base' of
management information accumulates and makes
more advanced and proactive management
applications possible

= Sets the stage for much more interesting
management solutions
» dynamic application networks
» intelligent application networks
» correlation
» root cause analysis
» automated recovery of failures, etc.

Management Services Broker

= |nstrumentation use directly by managed
resources

= Adaption from instrumentation APIs
= Connection Into management systems
= Plug&Swap manageabillity services
» substitute required services
» add support defined standard interface
»add custom services/custom interfaces
= Define minimum required services
= Define common optional services
= Based on DMTFs WBEM work

Success Factors

= Easy for application developer

= Flexible and able to support complex
applications

= |nvestment protection for existing
iInstrumentation development (AIC, JMX)

= Support emerging development models
(over traditional ones)

= |nvolvement and support from industry

Standards Involvement

= The Open Group Enterprise Management Program -
Manageability Work Group

» Publisher of Spec
» Publisher of Open Source Implementations

= DMTF - CIM/\WBEM
» Use xmICIM, HTTP/Ops, Schema
» Model for runtime application management

= OMG- Management SIG - interested in CORBA
based application management.
» Same goals, can we cooperate?
» Brings middleware vendors, distrib app vendors

= OASIS - ebXML is being developed as a protocol and
basis for B2B applications.

» \We need to ensure that manageability of these
applications is being considered.

Corporation Involvement

= Management Vendors: Tivoli, CA, BMC, HP,
Hitatchi(got these thru TOG/DMTF)

= Middleware Vendors: IBM/WebSphere,
BEA, Oracle, Inprise, lona

= Development Tool Vendors: IBM/VisualAge,
JBroker, JBuilder, Symantec, etc.

= Application Vendors:
» Traditional: PeopleSoft, SAP
»B2B: 12, Ariba, CommerceOne

» Corporate: Boeing, UKPost, AmEX?,
Diamler-Chrysler?

HP
Openview

Manageability
Services
Broker

Design Goals

= Define very lightweight Broker
= Allow dynamic pluggable services
= Define minimal set required services

= Broker and component location
iIndependence

= Must be able to manage complex,
distributed applications including corba
based, eBusiness (app server based), and
b2b applications.

Design Goals

= The same interfaces should be able to be used for
feeding application specific managment system as
well as any interested enterprise managment
systems

= All calls/messages to the broker should be sent to the
broker without any knowledge by the instrumentor
that a service will ultimately satisfy the call. It is the
brokers responsibility to map the call to the correct
service to handle It.

= Might have multiple of the same services registered.

Design Goals

= [nstrumentation Interface:

» EASY

to understand and use by application developers

of below average skill.

» code that needs to be inserted into the application must
be generateable by IDE's and wizards (DIl type interfaces
make this easier).

» should support CIM Schema based management objects

as we

» shoulo

| as schemaless management objects.
be easily extensible.

Affinity

= Need a standard 'default’ interface - XML over HTTP

= Language: Need a way to 'negotiate’' to communicate
In a language between two components of the same
language - Java or C, etc.

= |_ocation: Need a way to 'negotiate' remote
communication mechanism - In/out process, RMI,
Socket based, Corba based, message based, etc.

= Schema: Allow to 'negotiate’ Iif this is a schema or
schemaless communication

Required Standard Services

= Service Management
= [nstance Management
= Registration

= MetaData

= Delegation

= Relationships

= Query Static

= Query Dynamic

= Events

Required Standard Services

= Service Mangement (NEW) (Broker)

» addService(string serviceName, string
servicelnterfaceName, object NewService)

> removesService(string serviceName)
» gqueryService(string servicelnterfaceName)

Required Standard Services

(continued)

= |nstance Management (WBEM)
» createlnstance (object Newlnstance)

» getlnstance(string instanceName, boolean
localOnly)

» deletelnstance(string instanceName)

» modifylnstance(NamedObject
modifiedInstance)

» enumeratelnstances(string ClassName,
boolean LocalOnly, boolean Deeplnheritance)

» enumeratelnstanceNames(string ClassName)

Required Standard Services
(continued)

= Registration (NEW)
» Register an existing object as the management

object. Registrar may retain a handle to it, may
be local or remote.

» register(object newlnstance, string
InstanceName)

> unregister(string instanceName)

Required Standard Services
(continued)

= MetaData (WBEM)
» qualifierDecl getQualifier(string QualifierName)
» setQualifier(qualifierDecl QualiferDeclaration)
» deleteQualifier(string QualifierName)
» qualifierDecl[] enumerateQualifiers ()

Required Standard Services
(continued)

= Delegation (WBEM)

» propertyValue getProperty(instanceName
InstanceName, string PropertyName)

» setProperty(instanceName InstanceName,
string PropertyName,

» propertyValue NewValue)
» propertyValue[] enumerateProperties() (NEW)

» (New) invokeMethod(string instanceName,
string MethodName, object[] methodParms)

Required Standard Services

(continued)

= Relationships (WBEM)

» objectWithPath[] associators(objectName ObjectName,
string AssocClass,string ResultClass, string Role, string
ResultRole)

» objectWithPath[] associatorNames (objectName
ObjectName, string AssocClass,string ResultClass,
string Role, string ResultRole)

» objectWithPath[] references(objectName ObjectName,

string

» object
string

Resu
Path[|

Resu

tClass, string Role)

referenceNames(objectName ObjectName,
tClass,string Role)

Required Standard Services
(continued)

= Query Static (WBEM - query on static
information only)
» object[] execQuery(string QueryLanguage,
string Query)
= Query Dynamic (WBEM - allows query on
attribute values)
» object[] execQuery(string QueryLanguage,
string Query)

Required Standard Services
(continued)

= Event Delivery (WBEM)

> publishEvent(Event)

» subscribeEvent(Query)
> unsubscribeEvent(Query)
>

data: eventlD, severity, timestamp, text,
sequence#, originator

Optional Standard Services

= Naming (now standard?)

= |_ookup (optional, but first rel.)

= Discovery

= Schema Service (optional?, first rel.)
= Application Lifecycle

= Transactions (optional, first rel.

= Collections

= Policy

Optional Standard Services

= |nternal

» Bootstrap (Internal)

» Persistence (Internal)

» Caching (Internal)

» Security (Internal)

» Request Forwarding (Internal)
= Application

» Monitoring/Thresholding (App)

> Logging (App)

» Reporting (App)

» Scheduling (App)

Optional Standard Services

= Naming
» boolean checkName(string
InstanceName|className|serviceName
|servicelnterfaceName,enumeration
{instance|class|service|servicelnterface})

- getName returns a valid Name for the component, if a
proposed name is passed In it returns the same name
If its was unigque or a new or modified name if it was
not unique or valid.

» string getName()

» string getName(string
InstanceName|className|serviceName|
servicelnterfaceName,enumeration
{instance|class|service|servicelnterface})

Optional Standard Services

= [ooku
» find(

P (NEW)
oroker|instanceName|className|

com

nonentName|serviceName|

ManagedResourceName|etc)

» find(

namePattern,componentType,domain)

» advertise(broker|instanceName|className|
componentName|serviceName|
ManagedResourceName|etc)

= Discovery (NEW)

> IS thi

s a findAll discovery or a listenForNew

discovery? both? of Brokers? of Manageable
Resources? Both?

Optional Standard Services

= Schema Service (WBEM)
» createClass(object NewClass)
» modifyClass (NamedObject modifiedClass)

» getClass (string className, boolean
localOnly)

» deleteClass (string className)

» enumerateClasses(string ClassName, boolean
Deeplnheritance, boolean LocalOnly)

» enumerateClassNames(string ClassName,
boolean Deeplnheritance)

Optional Standard Services

= Application Lifecycle (NEW)
> start(object[] options)
> stop(object[] options)
> status(object[] options)
= Transactions (NEW)
> startTransaction(transaction|D)
> endTransaction(transactioniD)

Optional Standard Services

= Collections (NEW)

» dynamic collection (query based) issues events
to subscribers when members are
added/deleted. The collection listens for
lifecycle events from the broker.

» createCollection(queryStatement)

» createCollection(object[] instanceLlist)
= Policy (NEW? Based on WBEM?)

» setPolicy(policyRule)

» getPolicy(policyRule)

Optional Standard Services

= Bootstrap (NEW)
» IinitFile(string fleName)
» InstantiateObjects(object[] objectList)
» This would include instances, classes, or services.
= Persistence (NEW)
» load()
» store()
= Caching (NEW)
» cacheValue()
» getFromCache()
» setCachePolicy()

Optional Standard Services

= Security (NEW)

= Request Forwarding (NEW)
» forwardRequest(target)

= Monitoring/Thresholding (NEW)
> poll()

> pIing()
» evaluateThreshold()

Service Capabilities Advertising

= Basic Read: get/enumerate methods of Instance
Service, Schema Service, and Delegation Service

= Basic Write: Basic Read + Delegation Service

= Schema Manipulation: Instance Manipulation +
Schema Service

= I[nstance Manipulation: Basic Write + InstanceService
= Assoclation Tranversal: Basic Write + Relationships
= Query Execution: Basic Write + QueryStatic

= Qualifier Declaration : Schema Manipulation +
MetaData Service

